CHAPTER 3

Constraint Satisfaction in PDP Systems

In the previous chapter we showed how PDP networks could be used for
content-addressable memory retrieval, for prototype generation, for plausi-
bly making default assignments for missing variables, and for spontaneously
generalizing to novel inputs. In fact, these characteristics are reflections of
a far more general process that many PDP models are capable of —namely,
finding near-optimal solutions to problems with a large set of simultaneous
constraints. - This chapter introduces this constraint satisfaction process
more generally and discusses three different specific models for solving
such problems. The specific models are ‘the schema model, described in
PDP:14; the Boltzmann machine, described in PDP:7, and harmony theory,
described in PDP:6. These models are embodied in the cs (constraint satis-
faction) program. We begin with a general discussion of constraint satisfac-
tion and some general results. We then turn to the schema model. We
describe the general characteristics of the schema model, show how it can
be accessed from es, and offer a number of examples of it in operation.
This is followed in turn by detailed discussions of the Boltzmann machine
and harmony theory.

BACKGROUND

Consider a problem whose solution involves the simultaneous satisfaction
of a very large number of constraints. To make the problem more difficult,
suppose that there may be no perfect solution in which all of the con-
straints are completely satisfied. In such a case, the solution would involve
the satisfaction of as many constraints as possible. Finally, imagine that
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some constraints may be more important than others. In particular, sup-
pose that each constraint has an importance value associated with it and
that the solution to the problem involves the simultaneous satisfaction of as
many of the most important of these constraints as possible. In general,
this is a very difficult problem. It is what Minsky and Papert (1969) have
called the best match problem. It is a problem that is central to much of
cognitive science. It also happens to be one of the kinds of problems that
PDP systems solve in a very natural viay. Many of the chapters in the two
PDP volumes pointed to the importance of this problem and to the kinds of
solutions offered by PDP systems.

To our knowledge, Hinton was the first to sketch the basic idea for using
parallel networks to solve constraint satisfaction problems (Hinton, 1977).
Basically, such problems are translated into the language of PDP by assum-
ing that each unit represents a hypothesis and each connection a constraint
among hypotheses. Thus, for example, if whenever hypothesis A is true,
hypothesis B is usually true, we would have a positive connection from unit
A to unit B. If, on the other hand, hypothesis A provides evidence against
hypothesis B, we would have a negative connection from unit A to unit B.

PDP constraint networks are designed to deal with weak constraints
(Blake, 1983), that is, with situations in which constraints constitute a set
of desiderata that ought to be satisfied rather than a set of hard constraints
that must be satisfied. The goal is to find a solution in which as many of
the most important constraints are satisfied as possible. The importance of
the constraint is reflected by the strength of the connection representing
that constraint. If the constraint is very important, the weights are large.
Less important constraints involve smaller weights. In addition, units may
receive external input. We can think of the external input as providing
direct evidence for certain hypotheses. Sometimes we say the input
"clamps" a unit. This means that, in the solution, this particular unit must
be on if the input is positive or must be off if the input is negative. Other
times the input is not clamped but is graded. In this case, the input
behaves as simply another weak constraint. Finally, different hypotheses
may have different a priori probabilities. An appropriate solution to a con-
straint satisfaction problem must be able to reflect such prior information as
well. This is done in PDP systems by assuming that each unit has a bias,
which acts to turn the unit on in the absence of other evidence. If a partic-
ular unit has a positive bias, then it is better to have the unit on; if it has a
negative bias, there is a preference for it to be turned off.

We can now cast the constraint satisfaction problem described above in
the following way. Let goodness of fit be the degree to which the desired
constraints are satisfied. Thus, goodness of fit (or more simply goodness)
depends on three things. First, it depends on the extent to which each unit
satisfies the constraints imposed upon it by other units. Thus, if a connec-
tion between two units is positive, we say that the constraint is satisfied to
the degree that both units are turned on. If the connection is negative, we
can say that the constraint is violated to the degree that both units are
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turned on. A simple way of expressing this is to let the product of the
activation of two units times the weight connecting them be the degree to
which the constraint is satisfied. That is, for units i and j we let the pro-
duct w;a;¢; represent the degree to which the pairwise constraint between
those two hypotheses is satisfied. Note that for positive weights the more
the two units are on, the better the constraint is satisfied; whereas for nega-
tive weights the more the two units are on, the less the constraint is satis-
fied. Second, the a priori strength of the hypothesis is captured by adding
the bias to the goodness measure. Finally, the goodness of fit for a
hypothesis when direct evidence is available is given by the product of the
input value times the activation value of the unit. The bigger this product,
the better the system is satisfying this external constraint. Given this, we
can now characterize mathematically the degree to which a particular unit is
satisfying all of the constraints impinging on it. Thus the overall degree to
which the state of a particular unit, say unit 7, contributes to the overall
goodness of fit can be obtained by adding up the degree to which the unit
satisfies all of the constraints in which it is involved, from all three sources.
Thus, we can define the goodness of fit of unit / to be

goodness; = 3w, a,a; + input;a; + bias,a;. (1)
J

This, of course, is just the sum of all of the individual constraints in which
the corresponding hypothesis participates. It is not the individual
hypothesis, however, that is the problem in constraint satisfaction piob-
lems. In these cases, we are concerned with the degree to which the entire
pattern of values assigned to all of the units are consistent with the entire
body of constraints. This overall goodness of fit is the function we want to
maximize. We can define our overall goodness of fit as the sum of the
individual goodnesses. In this case we get

goodness = zw,-} a;a; + Y input,a; + Y bias,a,. (2

We have solved the problem when we have found a set of activation values
that maximizes this function. It should be noted that since we want to
have the activation values of the units represent the degree to which a par-
ticular hypothesis is satisfied, we want our activation values to range
between a minimum and maximum value—in which the maximum value is
understood to mean that the hypothesis should be accepted and the
minimum value means that it should be rejected. Intermediate values
correspond to intermediate states of certainty.

We have now reduced the constraint satisfaction problem to the problem
of maximizing the goodness function given above. There are many
methods of finding the maxima of functions. Importantly, there is one
method that is naturally and simply implemented in a class of PDP net-
works. One restriction on this class of networks is the restriction that the

Note : In Equation 2, each pair of units contributes only one time to the first summation (wij is
assumed equal to wy; ). The total goodness is not the sum of the goodnesses of the individua) units.
It is best to think of the goodness of unit i as the set of terms in the total goodness to which the
activation of unit i contribufes.
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weights in the network be symmetric: that is, the condition that w; = w;;.
Under these conditions it is easy to see how a PDP network naturally sets
activation values so as to maximize the goodness function stated above. To
see this, first notice that the goodness of a particular unit, goodness;, can be
written as the product of its current net input times its activation value.
That is,

goodness; = net;a; a (3)

where, as usual for PDP networks, net; is defined as

net; = Y.w;a; + input, + bias,. ()
J

Thus, the net input into a unit provides the unit with information as to its
contribution to the goodness of the entire solution. Consider any particular
unit in the network. That unit can always behave so as to increase its con-
tribution to the overall goodness of fit if, whenever its net input is positive,
the unit moves its activation toward its maximum activation value, and
whenever its net input is negative, it moves its activation toward its
minimum value. Moreover, since the global goodness of fit is simply the
sum of the individual goodnesses, a whole network of units behaving in
such a way will always increase the global goodness measure. These obser-
vations were made by Hopfield (1982). We will return to Hopfield’s
important contribution to this analysis again in our discussion of Boltzmann
machines and harmony theory.

It might be noted that there is a slight problem here. Consider the case
in which two units are simultaneously evaluating their net inputs. Suppose
that both units are off and that there is a large negative weight between
them; suppose further that each unit has a small positive net input. In this
case, both units may turn on, but since they are connected by a negative
connection, as soon as they are both on the overall goodness may decline.
In this case, the next time these units get a chance to update they will both
go off and this cycle can continue. There are basically two solutions to this.
The standard solution is not to allow more than one unit to update at a
time. In this case, one or the other of the units will come on and prevent
the other from coming on. This is the case of so-called asynchronous
update. The other solution is to use a synchronous update rule but to have
units increase their activation values very slowly so they can "feel" each
other coming on and achieve an appropriate balance.

In practice, goodness values generally do not increase indefinitely. Since
units can reach maximal or minimal values of activation, they cannot con-
tinue to increase their activation values after some point so they cannot
continue to increase the overall goodness of the state. Rather, they increase
it until they reach their own maximum or minimum activation values.
Thereafter, each unit behaves so as to never decrease the overall goodness.
In this way, the global goodness measure continues to increase until all
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units achieve their maximally extreme value or until their net input
becomes exactly 0. When this is achieved, the system will stop changing
and will have found a maximum in the goodness function and therefore a
solution to our constraint satisfaction problem. When it reaches this peak
in the goodness function, the goodness can no longer change and the net-
work is said to have reached a stable state; we say it has settled or relaxed to
a solution. Strictly speaking, this solution state can be guaranteed only to
be a local rather than a global maximum in the goodness function. That is,
this is a hill-climbing procedure that simply ensures that the system will find
a peak in the goodness function, not that it will find the highest peak. The
problem of local maxima is difficult. We address it at length in a later sec-
tion. Suffice it to say, that different PDP systems differ in the difficulty
they have with this problem.

The development thus far applies to all three of the models under discus-
sion in this chapter. It can also be noted that if the weight matrix in an
IAC network is symmetric, it too is an example of a constraint satisfaction
system. Clearly, there is a close relation between constraint satisfaction
systems and content-addressable memories.

We turn, at this point, to a discussion of the specific models and some
examples with each. We begin with the schema model of PDP:14.

THE SCHEMA MODEL

The schema model is one of the simplest of the constraint satisfaction
models, but, nevertheless, it offers useful insights into the operation of all
of the constraint satisfaction models. In PDP:2 we described a set of
characteristics required to specify any model’s particular features. The
three models under discussion differ from one another primarily as to
whether the units behave deterministically or stochastically (probabilisti-
cally), whether the units take on a continuum of values or only binary
values, and by the allowable set of connections among the units. The
schema model is deterministic; its units can take on any value between 0
and 1. The connection matrix is symmetric and the units may not connect
to themselves (i.e., w;=w; and w;=0). Update in the schema model is
asynchronous. That is, units are chosen to be updated sequentially in ran-
dom order. When chosen, the net input to the unit is computed and the
activation of the unit is modified. The logic of the hill-climbing method
implies that whenever the net input (ner;) is positive we must increase the
activation value of the unit, and when it is negative we must decrease the
activation value. Thus we use the following simple update rule:

a;(t+1)=a;(t) + net;(1 — a,(t)) &)

when ret; is greater than 0, and
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a;(t + 1) = a;(t) + net;a; (t) (6)

when net; is less than 0. Note that in this second case, since net; is nega-
tive and a; is positive, we are decreasing the activation of the unit. This
rule has two virtues: it conforms to the requirements of our goodness func-
tion and it naturally constrains the activations between 0 and 1.

As usual in these models, the net input comes from three sources: a
unit’s neighbors, its bias, and its external inputs. These sources are added.
Thus, we have

net; = istr (3 wya; + bias;) + estr (input;). (7N
J

Here the constants istr and estr are parameters that allow the relative con-
tributions of the input from external sources and that from internal sources
to be readily manipulated.

IMPLEMENTATION

The es program implementing the schema model is much like iac in
structure. It differs in that it does asynchronous updates using a slightly dif-
ferent activation rule. Like iac, cs consists of essentially two routines: (a)
an update routine called rupdate (for random update), which selects units at
random and computes their net inputs and then their new activation values,
and (b) a control routine, cycle, which calls rupdate in a loop for the speci-
fied number of cycles while displaying the results on the screen. Thus,
cycle is as follows:

cycle () {
for(i = 0; i < ncycles; i++) {
cyclenot++;
rupdate () ;
update_display();
}

Thus, each time cycle is called, the system calls rupdate and then displays
the results of the computation. The rupdate routine itself does all of the
work. It randomly selects a unit, computes its net input, and assigns the
new activation value to the unit. It does this nupdates times. Typically, nup-
dates is set equal to nunits, so a single call to rupdate, on average, updates
each unit once;
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rupdate () |

for (updatenc = 0; updateno < nupdates; updateno++) |{

i = randint (0, nunits - 1);
netinput = 0;
for(j = 0; j < nunits; J++) {

netinput += activation([j]*weight[i][j];
}
netinput += bias[i];
netinput *= istr;
netinput += estrength*input([i];

if (netinput > 0}

activation([i] += netinput* (l-activation[i]);
else

activation([i] += netinput*activation[i];

RUNNING THE PROGRAM

The basic structure of c¢s and the mechanics of interacting with it are
identical to those of iac. The cs program, like all of our programs, requires
a template (.tem) file that specifies what is displayed on the screen and a
start-up (.str) file that initializes the program with the parameters of the
particular program under consideration. It also requires a .net file specify-
ing the particular network under consideration, and may use a .wrs file to
specify particular values for the weights. It also allows for a .pat file for
specifying a set of patterns that can be presented to the network. Once you
are in the appropriate directory, the program is accessed by entering the
command:

CS Xxx.tem XX str

where xxx is the name of the particular example you are running.

The normal sequence for running the model involves applying external
inputs to some subset of the units by use of the input command and using
the cycle command to cause the network to cycle until it finds a goodness
maximum. Typically, the value of the goodness is displayed after each
cycle, and the system will cycle ncycles times and then stop. If the system
has not yet reached a stable state, it can be continued from where it left off
if the user simply enters cycle again. The system can be interrupted at any
time by typing "C (control-C).

Two commands are available for restarting the system. Both commands
set cycleno back to 0, and both reinitialize the activations of all of the units.
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However, one of these commands, newstart, causes the program to follow a
new random updating sequence when next the cycle command is given,
whereas the other command, reset, causes the program to repeat the same
updating sequence used in the previous run. Alternatively, the user can
specify a particular value for the random seed and enter it manually via the
set/ seed command; when reset is next called, this value of the seed will be
used, producing results identical to those produccd on other runs begun
with this same seed in force.

The ¢s program implements both the Boltzmann model and harmony
theory in addition to the schema model. In this section we will introduce
those aspects of es relevant to all three models, even though some of these
will not be explained until later in the chapter.

New or Altered Commands

newstart
Generates a new random seed for the random number generator
and then issues a reset command. The effect is to cause the net to
follow a new random sequence of updates when cycle is subse-
quently entered.

reset
Resets the network back to its initial state. In clamp mode, units
with positive external input are clamped on and units with negative
external inputs are clamped off. All others have their activations
set to 0. The cycle number is reset to 0, and the random number
generator is seeded with the value of the seed variable. Unless the
seed has been changed, either by the set/ seed command or by call-
ing reset via newstart, this means that the program will go on to
repeat the same random sequence that was generated after the last
reset.

get/ annealing
Allows the user to specify an annealing schedule for use in
boitzmann or harmony mode (these modes are discussed later in the
chapter). It begins by prompting for an initial temperature. The
annealing schedule begins at this temperature. It then prompts for
a sequence of time-temperature pairs. A carriage return or the
string end given in response to the prompt will terminate the entry
of the schedule. The system linearly interpolates from the initial
temperature so that at the time (measured in number of cycles)
specified in the first pair, the temperature will reach the value
specified for that time. It then linearly interpolates from that tem-
perature to the next temperature at the next time. This continues
until the final time is reached. Thereafter the temperature remains
constant at the final value.
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Variables

The following variables are new or somewhat different in the es program.
They are accessed by way of the set and exam commands as in iac.

bias

A vector that contains the values of the biases for each of the units.

nupdates

seed

siema

stepsize

Determines the number of updates per cycle. Generally, it is ini-
tialized in the .net file to be equal to nunits, so that each unit will be
updated once per cycle, on the average.

The current value of the seed used for reinitializing the random
number generator. The seed is set to a random starting value when
the program is first called, and this value is used to initialize the
random number generator. Calls to reser cause the random number
generator to be reinitialized to the current value of seed, and calls
to newstart cause seed itself to be set to a new random value before
resetting. The seed may be set to any desired integer value using
the set/ seed command. Unless manually changed, the value of
seed will be the value used last time the random number generator
was reinitialized and it can be used again later to repeat the same
sequence.

A vector that contains the values of the importance parameters
associated with knowledge atoms in harmony theory.

Determines exactly when information about the state of the pro-
gram is displayed to the screen. If stepsize is set to cycle (the
default value), the information will be displayed on the screen after
every cycle. If the stepsize is set to update, information will be
displayed on the screen after every time a unit is updated. If single
is set to 1, the program will pause after every screen update.

mode/ boltzmann

If boltzmann is set to 1, the program will behave as a Boltzmann
machine. If it is set to O it will act as the schema model. The
default value is 0.

mode/ clamp

If clamp is set to 1, positive external inputs supplied via the input
and fest commands cause the units receiving them to come on and
stay on, and negative inputs cause the units to go off and stay off.
Zero inputs have no effect on the units. If clamp is set to 0, exter-
nal inputs are graded and act as additional weak constraints on their
units; they are simply added into the net input of the unit. The
default is that clamp is set to 0.
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mode/ harmony
If harmony is set to 1, the program will behave as a harmonium, as
defined in PDP:6. The default is that this is set to 0.
param/ istr
Scales the magnitude of internal input to each unit.
param/ kappa
This parameter is relevant in harmony mode. It is basically a global
threshold that indicates the fraction of the inputs to a knowledge
atom that must "agree with" that knowledge atom before that atom
will tend to come on. See the discussion of harmony theory for
details.
state/ cuname
The name of the current unit (the one most recently updated).
state/ goodness
Contains the current value of the goodness for the entire network.
state/ temperature
A variable relevant to the Boltzmann machine and harmony theory,
as will be explained in those sections. It is normally adjusted in
accordance with an annealing schedule.
state/ unitno
The number of the unit last updated.
state/ updateno
Tells which update is currently being done, counting from the
beginning of the current cycle.

OVERVIEW OF EXERCISES

We offer four exercises to try with the schema model. In Ex. 3.1, we
give you the chance to explore the basic properties of this constraint satis-
faction system, using the Necker cube example in PDP:14 (originally from
Feldman, 1981). Ex. 3.2 considers how the schema model deals with
knowledge that has traditionally been taken as evidence for schemata, using
the room example in PDP:14. Exs. 3.3 and 3.4 are more complex projects:
Ex. 3.3 suggests you try the tic-tac-toe example in PDP:14 and Ex. 3.4 is
even more open ended. In Appendix E we provide answers for the ques-
tions in Exs. 3.1 and 3.2.

Ex. 3.1. The Necker Cube

Feldman (1981) has provided a clear example of a constraint satisfaction
problem well-suited to a PDP implementation. That is, he has shown how
a simple constraint satisfaction model can capture the fact that there are
exactly two good interpretations of a Necker cube. In PDP:14 (pp. 8-17),
we describe a variant of the Feldman example relevant to this exercise. In
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this example we assume that we have a 16-unit network (as illustrated in
Figure 1). Each unit in the network represents a hypothesis about the
correct interpretation of a vertex of a Necker cube. For example, the unit
in the lower left-hand part of the network represents the hypothesis that
the lower left-hand vertex of the drawing is a front-lower-left (fIf) vertex.
The upper right-hand unit of the network represents the hypothesis that the
upper right-hand vertex of the Necker cube represents a front-upper-right
(fur) vertex. Note that these two interpretations are inconsistent in that we
do not normally see both of those vertices as being in the frontal plane.
The Necker cube has eight vertices, each of which has two possible
interpretations—one corresponding to each of the two interpretations of the
cube. Thus, we have a total of 16 units. Three kinds of constraints are
represented in the network. First, since each vertex can have only one
interpretation, we have a negative connection between units representing
alternative interpretations of the same vertex. Second, since the same
interpretation cannot be given to more than one vertex, units representing
the same interpretation are mutually inhibiting. Finally, units that
represent locally consistent interpretations should be mutually exciting.
Thus, there are positive connections between a unit and its three consistent
neighbors. The system will achieve maximal goodness when all units
representing one consistent interpretation of the Necker cube are turned on

BUL BUR FUL FUR

FUL FUR BUL BUR

BLL BLR FLL FLR

FLL FLR BLL BLR

FIGURE 1. A simple network representing some of the constraints involved in perceiving the
Necker cube. (From PDP: 14, p. 10.)
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and those representing the other interpretation are turned off. In the
diagram, the two subsets of units are segregated so that we expect that
either the eight units on the left will come on with the others turned off or
the eight units on the right will come on.

Using the cube.tem and cube.str files, explore the Necker cube example
described in PDP:14. Run the program several times and look at the
obtained interpretations. Record the distribution of interpretations.

Start up the e¢s program with the cube template and start-up files:

¢s cube.tem cube.str

At this point the screen should look like the one shown in Figure 2. The
display depicts the two interpretations of the cube and shows the activation
values of the units, the current cycle number, the current update number,
the name of the most recently updated unit (there is none yet so this is
blank), the current value of goodness, and the current temperature. (The
temperature is irrelevant for this exercise, but will become important later.)
The activation values of all 16 units are shown, initialized to 0, at the
corners of the two cubes drawn on the screen. The units in the cube on
the left, cube A, are the ones consistent with the interpretation that the
cube is facing down and to the left. Those in the cube on the right, cube
B, are the ones consistent with the interpretation of the cube as facing up
and to the right. The dashed lines do not correspond to the connections
among the units, but simply indicate the interpretations of the units. The
connections are those shown in the Necker cube network in Figure 1. The
vertices are labeled, and the labels on the screen correspond to those in
Figure 1. All units have names. Their names are given by a capital letter

5
disp/ exam/ get/ sawve/ set/ clear cycle do input log newstart quit
reset run test
bul bur ful fur
L et 0 B o ke ot e e 0 cycleno 1]
/ | 7 |
/ /o /o | updateno 0
4 el | S |
/ / | / | | cuname
ful fur | bul | bur |
Prs e 0 | 0 | -0 | goodness 0.0000
| b1l | blc | | | |
| Q- | 0 | O--m—————— 0 temperature 0.0000
| / | / | £f11 flr
| | / | / /
| 1/ 1/ /
| |/ (4 /
| I/ I /
Ommmmmmmmmmm 0 0---mmmmmmmn 0
£f11 £LE bll blr
A B

FIGURE 2. The initial image of the screen for the cube example.
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indicating which interpretation is involved (A or B), followed by the label
appropriate to the associated vertex. Thus, the unit displayed at the lower
left vertex of cube A is named Afll, the one directly above it is named Afil
(for the front-upper-left vertex of cube A), and so on. You can use these
names to examine the activation values and connections among the units.
Thus, for example, it is possible to examine the connection between the
unit Aflr (the unit representing the hypothesis that the lower right-hand
vertex of the Necker cube is in the frontal plane=interpretation A) and the
unit Bblr (the unit representing the hypothesis that the lower right-hand
vertex of the Necker cube is in the back plane—interpretation B) by giving
the names Aflr and Bblr when examining weights. The weights between
these two units should be —1.5. (This is reasonable since these two units
represent alternative interpretations of the same vertex and so should be
inhibitory.)

We are now ready to begin exploring the cube example. The biases and
connections among the units have already been read into the program (they
were specified in the cube.net file, read in by the get/ network command in
the cube.str file). In this example, all units have positive biases, therefore
there is no need to specify inputs. Simply type cycle. After the command
is typed, the display will flash, and various numbers representing the activa-
tion values of the corresponding units will replace the Os at the corners of
the cubes. Only single digits are displayed. The numbers are the tenths
digit of the activation levels, so that a 4 in the display indicates that the
corresponding unit’s activation is between 0.4 and 0.5. When the activation
values reach 1.0 (their maximum value), an asterisk is plotted. After the
display stops flashing you should see that the variables on the right have
attained some new values, and you should have a display roughly like that
in Figure 3. The variable cycle should be 20, indicating that the program
has completed 20 cycles. The variable update should be at 16, indicating
that we have completed the 16th update of the cycle. The uname will indi-
cate the last unit updated. The goodness may have a value of 6.4. If it
does, the network has reached a global maximum and has found one of the
two "standard" interpretations of the cube. In this case you should find
that the activation values of those units in one subnetwork have all reached
their maximum value (indicated by asterisks) and those in the other sub-
network are all at 0. If the goodness value is less than 6.4, then the system
has found a local maximum and there will be nonzero activation values in
both subnetworks. You can run the cube example again by issuing the
newstart command and then entering cycle. Do this, say, 20 times to get a
feeling for the distribution of final states reached.

Q.3.1.1. How many times was each of the two valid interpretations found?
How many times did the system settle into a local maximum?
What were the local maxima the system found? Do they
correspond to reasonable interpretations of the cube?
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cs:
disp/ exam/ get/ save/ set/ clear cycle do input log newstart quit
reset run test
bul bur ful fur
----------- * {msrnssmsninet] cycleno 20
S /1l /1 |
/ /| | | updateno 16
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FIGURE 3. The state of the system after 20 cycles.

Now that you have a feeling for the range of final states that the system
can reach, try to see if you can understand the course of processing leading
up to the final state.

Q.:331%2.

Hints.

Q3713

What causes the system to reach one interpretation or the other?
How early in the processing cycle does the eventual interpretation
become clear? What happens when the system reaches a local
maximum? Is there a characteristic of the early stages of process-
ing that leads the system to move toward a local maximum?

The movement on the screen can be rapid, and it may be difficult
to see exactly what is happening. It is sometimes useful to set
single to 1 and to set stepsize to update. Under these conditions,
the program refreshes the display and pauses after each update.
Note also that if you wish to study the evolution of the system
toward a particular end state, you can issue the newstart command
repeatedly, followed by cycle, with single set to 0, until the system
settles to the desired end state, and then use reser to repeat the
identical run, perhaps first setting single to 1 and stepsize to update.

There is a parameter in the schema model, istr, that multiplies the
weights and biases and that, in effect, determines the rate of
activation flow within the model. The probability of finding a
local maximum depends on the value of this parameter. How
does the relative frequency of local maxima vary as this parameter
is varied? Try several values from 0.08 to 2.0. Explain the
results you obtain.
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Hints. You will probably find that at low values of isfr you will want to
increase ncycles. Alternatively, you can just issue the cycle com-
mand a second time if the network doesn’t settle in the first 20
cycles. You may also want to set single back to 0 and stepsize back
to cycle. Do not be disturbed by the fact that the values of good-
ness are different here than in the previous runs. Since istr multi-
plies the weights, it also multiplies the goodness so that goodness
is proportional to istr. -

Reset istr to its initial value of 0.4 before proceeding to the next ques-
tion.

Q.3.1.4. It is possible to use external inputs to bias the network in favor of
one of the two interpretations. Study the effects of adding an
input of 1.0 to the units in one of the subnetworks, using the
input command. Look at how the distribution of interpretations
changes as a result of the number of units receiving external
input in a particular subnetwork.

Ex. 3.2. Schemata for Rooms

Interestingly, a simple constraint satisfaction network of the type we have
just been describing leads to an interesting interpretation of what a schema
may be like and how schemata may be implemented in PDP networks.
This idea was described in some detail in PDP:14. Here we offer a brief
summary. The basic idea is that our knowledge is in the form of a con-
straint satisfaction network. Conventionally (cf. Rumelhart & Ortony,
1977), a schema is a higher-level conceptual structure for representing the
complex relationships implicit in our knowledge base. Schemata are data
structures for representing generic concepts stored in memory. They are
like models of the outside world. Information is processed by first finding
the schema that best fits the current situation and then using that model to
fill in aspects of the situation not specified by the current input. In general,
a consistent configuration of such models (or schemata) is discovered that
constitutes an interpretation of the situation in question. Within the PDP
framework there is no explicit unit or other representational entity
corresponding to a schema. Rather, schemata are implicit in our knowledge
and arise, while processing information, from the interactions of a large set
of constraints. Thus, the units of such a constraint network correspond
to hypotheses that certain semantic features are appropriate descriptions of
the situation in question. Some of these features are available in the input
and form the starting place of the interpretation process. Others are un-
specified and must be filled in during the process of interpretation. The
final state achieved by the network corresponds to the interpretation. Thus,
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interpretations correspond to local maxima defined over the "goodness”
landscape. The constraint satisfaction network captures the two most basic
characteristics of schemata: It has a goodness of fit measure and finds the
interpretation that is maximally consistent with both the external con-
straints and the internal knowledge. It automatically completes the pattern
and thereby fills in unspecified variables in the situation with their default
values.

The primary example in PDP:14 was an illustration of how a network
constructed according to these simple principles could be a constraint net-
work that behaved as if it contained schemata for five different kinds of
rooms—for living rooms, kitchens, bedrooms, offices, and bathrooms. The
units in this case stood for the hypotheses that a particular room in ques-
tion contained a typewriter, coffee cup, sofa, bed, and so on. In all, 40
such features were considered. These features are shown in Table 1. The
connection strengths themselves were derived from the co-occurrences of
the particular characteristics generated from a simple experiment in which a
subject imagined rooms of different types and then judged for all 40
features whether or not they were true of the rooms she was imagining. If
two features generally occurred together, the connection between them was
strong; if two features occurred separately, the connections between them
were negative. The details are described in PDP:14.

To begin exploring the issues, use the room.tem and room.str files to
replicate the basic five prototypes illustrated on pages 26 and 27 of PDP:14.
As in the text, use oven, desk, bathtub, sofa, and bed as the seeds for the
prototypes.

We can find the prototype kitchen, for example, by clamping the oven
unit and letting the system settle to a solution, filling in the unspecified
features.! You can use the input command to set the value of oven to 1 and
thereby clamp it on. Enter cycle; this will cause 50 cycles to be run, since

TABLE 1

THE 40 ROOM DESCRIPTORS

ceiling walls door windows very-large
large medium small very-small desk
telephone bed typewriter bookshelf carpet

books desk-chair clock picture floor-lamp
sofa easy-chair coffee-cup ashtray fireplace
drapes slove coffeepot refrigerator toaster
cupboard sink dresser television bathtub

toilet scale oven computer clothes-hanger

(From PDP:14, p. 22.)

1 In PDP: 14, we clamped on the ceiling unit as well as one other unit. Here, we have set the
biases on the ceiling and wall units that essentially force these units to come on, saving you the
trouble of clamping one of them in the input command.
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ncycles is set to 50. At this point, the system should almost always reach the
state shown in Figure 4, with a goodness of about 21.2. The screen display
gives the names of each of the units in the network. The external input to
each unit is indicated to the left of the unit’s name; its activation is indi-
cated to the right. External inputs of +1.0 are indicated by two asterisks;
inputs of —1.0 are indicated by two asterisks in reverse video. (Note that in
this example, unlike the Necker cube example, the clamp variable is set to
1. Thus, units whose inputs are set to a positive number will be forced to
stay on.) Activations and other values of external input are indicated in
hundredths, so, for example, the activation of the drapes unit is 0.99 and
the activation of the oven unit is 1.0.

Q.3.2.1. Does the system always settle to the same pattern for each proto-
type? How do the final values of goodness differ for the different
prototypes? Why do they differ? Do other initial inputs lead to
other patterns? Are there other prototypes in the network that can
be accessed from clamping a single unit? Try a couple of runs
replicating the results shown on page 34 of PDP:14 when bed and
sofa have been clamped on. What happens when you clamp other
pairs of units, like sofa and bathtub?

Hints. 1t is better to use the newstart command rather than reset. This
ensures that successive runs are independent of each other. Note
that newstart should be called after changing the external input
with the input command. To answer these questions, it will be
useful to refer to the weights used in the room example. These
are shown in Figure 5.

3
disp/ exam/ get/ save/ set/ clear cycle do input log newstart quit
reset run test

0 ceiling 100 O very-sm 0 0 desk-ch 0 O fire-pl 0 0 dresser 0

0 walls 100 0 desk 0 0 clock 100 O drapes 99 0 televis 0
0 door 0 0 telepho 98 0 picture 0 0 stove 100 O bathtw 0
0 window 100 0 bed 0 0 floor-1 0 0 sink 100 0 toilet 0
0 wery-la 0 Q typewri o 0 sofa Q 0 refrige 100 0 scale 0
0 large 0 0 book-sh 0 0 easy-ch 0 0 toaster 100 O coat-ha O

0 medium 0 0 carpet 0 0 coffee- 93 0 cupboar 100 0 compute O

0 small a9 0 books 0 0 ash-tra 0 0 coffeep 100 ** oven 100

cycleno 50 goodness Z1. 2014 temperature 0.0000

FIGURE 4. The kitchen prototype, as seen in the ¢s program’s display.
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FIGURE 5. The figure uses the method of Hinton and Sejnowski (PDP:7) to display the
weights. Each unit is represented by a square. The name below the square names the descrip-
tor represented by each square. Within each unit, the small black and white squares represent
the weights from that unit to each of the other units in the system. The relative position of
the small squares within each unit indicates the unit with which that unit is connected. (From
PDP: 14, p. 24)

On page 35 of PDP:14 we illustrate a case in which the goodness is
greater for office when the units window and drapes are both on or are both
off than when only one of them is on. Using the program, find the
numeric values of the goodnesses for the four combinations of goffice with
or without windows and with or without drapes. The point of this example
is that, in the case of office, window and drapes form a kind of a unit. An
office is better with both or neither than with one alone. The window-
drapes cluster interacts differently with different room types.

Finding the goodness values is a bit tricky. Essentially, you have to
clamp all of the units to their prototype values and cycle a few times. Set-
ting all 40 values using input can be tedious. In this case, the simplest way
to proceed is to get a set of patterns from a file and then, using test, select
one of the patterns and let the system cycle a few times to compute the
goodness. For this example, there is a file called room.pat that contains the
patterns for the prototype of each of the five rooms. This can be accessed
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through the get/ patterns command. The following interchange will access
the patterns.

Ccs: get patterns
filename for patterns: room.pat

The patterns for the prototypes are named office, living, bedroom, bathroom,
and kitchen. You can examine these patterns with the command display/
env. It is a good idea to clear the screen first. The display/ env com-
mand produces a display that lists the names of the defined patterns
down the left side of the screen and the names of the units (printed verti-
cally) across the top. The patterns are rows of 1s and —1s. For example,
in the office pattern, the units ceiling, wall, door, large, desk, telephone, type-
writer, and several others are on.

You can test the system using the office pattern with the fest command. It
is a good idea to set ncycles to a small value since the final goodness value
for the entire clamped network will be reached almost immediately. We are
now in a position to try the window-drapes example. First test the office
pattern. Note that both the window and the drapes units are off and that the
goodness is 23.78. Now, turn drapes on without disturbing the rest of the
inputs. This can be done with the input command, although you must be
careful not to reset all of the input values. Now, reset the activation levels
of the units and cycle.? You should find a goodness level of 23.11. Now
clamp the window unit on, so that both the window and drapes units are
clamped on, reset and cycle again. In this case with both units on, we have
a goodness of 23.62. Finally, turn the drapes unit off (i.e., give it a nega-
tive input value), so that the window unit is on and drapes is off, and enter
reset and cycle again. Here you should find a goodness of 23.35. You
should now be able to carry out this procedure with the rest of the proto-
types.

Q.3.2.2. First repeat the window experiment with the bathroom prototype.
In what way are the results different? Try it with bedroom,
kitchen, and living room prototypes as well. Note the different
patterns of results in the different contexts. What sense can you
make of these different patterns?

Ex. 3.3. Jets and Sharks

An additional example that can be studied within the context of the ¢s
program is the Jets and Sharks example from Chapter 2. The appropriate

2 Note that the reset and newstart commands are both fine to use in this case because all units
are clamped and so the order of updating does not matter.
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files are all set up; you can explore the network’s performance on many of
the same inputs we used in Chapter 2. To run, simply start up the cs pro-
gram with the jets.tem and jets.str files, specify external inputs as appropri-
ate, and then use the cycle command. See if you can understand and
explain the differences between the way the two models behave on these
two examples.

In experimenting with this example, it is interesting to separately explore
the effects of varying the inhibition on the input units and the hidden
units. This must be done by changing the values assigned to the constraint
letters & (for hidden) and v (for visible) in the jers.net file. As supplied, v
is set to —2.0 and h to —1.0. Thus, inhibition is relatively strong among the
visible units, but not so strong among hidden (instance) units. You can
change these values by editing this file if you wish to explore this matter
further.

Ex. 3.4. Tic-Tac-Toe

As a final suggestion for an experiment to try with the schema model, we
propose the following somewhat more challenging exercise. Using the basic
design illustrated on page 49 of PDP:14, build a version of the schema
model that is able to take a tic-tac-toe board as an input and settle into a
state in which it produces the appropriate move. This will involve building
an appropriate tic.tem file, an appropriate tic.str file, and appropriate tic.net
and tic.wrs files.

LOCAL MAXIMA AND THE PHYSICS ANALOGY

In this section we provide a brief description of Hinton and Sejnowski’s
Boltzmann machine and of Smolensky’s harmony theory as they are
described in PDP:7 and PDP:6, respectively. These systems were
developed from an analogy with statistical physics and it is useful to put
them in this context. We thus begin with a description of the physical anal-
ogy and then show how this analogy solves some of the problems of the
schema model described earlier. Then we turn to a description of the
Boltzmann machine, show how it is implemented, show how the cs pro-
gram can be used in boltzmann mode to solve constraint satisfaction prob-
lems, and finally discuss harmony theory and how it can be implemented
using the ¢s program.

The primary advantage of these systems over the deterministic constraint
satisfaction system used in the schema model is their ability to overcome
the problem of local maxima in the goodness function. It will be useful to
begin with an example of a local maximum and try to understand in some
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detail why it occurs and what can be done about it. Figure 6 illustrates a
typical example of a local maximum with the Necker cube. Here we see
that the system has settled to a state in which the lower four vertices were
organized according to interpretation A and the upper four vertices were
organized according to interpretation B. Local maxima are always blends of
parts of the two global maxima. We never see a final state in which the
points are scattered randomly across the two interpretations. All of the
local maxima are cases in which one small cluster of adjacent vertices are
organized in one way and the rest are organized in another. This is because
the constraints are local. That is, a given vertex supports and receives sup-
port from its neighbors. The units in the cluster mutually support one
another. Moreover, the two clusters are always arranged so that none of
the inhibitory connections are active. Note in this case, Bfur is on and the
two units it inhibits, Afir and Abur, are both off. Similarly, Bbur is on and
Abur and Afur are both off. Clearly the system has found little coalitions of
units that hang together and conflict minimally with the other coalitions.

In Q.3.1.2 of Ex. 3.1, you had the opportunity to explore the process of
settling into one of these local maxima. What happens is this. First a unit
in one subnetwork comes on. Then a unit in the other subnetwork, which
does not interact directly with the first, is updated, and, since it has a posi-
tive bias and at that time no conflicting inputs, it also comes on. Now the
next unit to come on may be a unit that supports either of the two units
already on or possibly another unit that doesn’t interact directly with either
of the other two units. As more units come on, they will fit into one or
another of these two emerging coalitions. Units that are directly incon-
sistent with active units will not come on or will come on weakly and then
probably be turned off again. In short, local maxima occur when units that

=
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FIGURE 6. A local minimum with the Necker cube.
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don’t interact directly set up coalitions in both of the subnetworks; by the
time interaction does occur, it is too late, and the coalitions are set.

Interestingly, the coalitions that get set up in the Necker cube are analo-
gous to the bonding of atoms in a crystalline structure. In a crystal the
atoms interact in much they same way as the vertices of our cube. If a par-
ticular atom is oriented in a particular way, it will tend to influence the
orientation of nearby atoms so that they fit together optimally. This hap-
pens over the entire crystal so that some atoms in one part of the crystal
can form a structure in one orientation while atoms in another part of the
crystal can form a structure in another orientation. The points where these
opposing orientations meet constitute flaws in the crystal.

It turns out that there is a strong mathematical similarity between our
network models and these kinds of processes in physics. Indeed, the work
of Hopfield (1982, 1984) on so-called Hopfield nets, of Hinton and
Sejnowski (1983, PDP:7) on the Boltzmann machine, and of Smolensky
(1983, PDP:6) on harmony theory were strongly inspired by just these
kinds of processes. In physics, the analogs of the goodness maxima of the
above discussion are energy minima. There is a tendency for all physical
systems to evolve from highly energetic states to states of minimal energy.

In 1982, John Hopfield, a physicist, observed that symmetric networks
using deterministic update rules behave in such a way as to minimize an
overall measure he called energy defined over the whole network.
Hopfield’s energy measure was essentially the negation of our goodness
measure. We use the term goodness because we think of our system as a
system for maximizing the goodness of fit of the system to a set of con-
straints. Hopfield, however, thought in terms of energy, because his net-
works behaved very much as thermodynamical systems, which seek
minimum energy states. In physics the stable minimum energy states are
called attractor states. This analogy of networks falling into energy minima
just as physical systems do has provided an important conceptual tool for
analyzing parallel distributed processing mechanisms.

Hopfield’s original networks had a problem with local "energy minima"
that was much worse than in the schema model described earlier. His units
were binary. (Hopfield, 1984, has since gone to a version in which units
take on a continuum of values to help deal with the problem of local
minima in his model. The schema model is similar to Hopfield’s 1984
model.) For binary units, if the net input to a unit is positive, the unit
takes on its maximum value; if it is negative, the unit takes on its
minimum value (otherwise, it doesn’t change value). Binary units are
more prone to local minima because the units do not get an opportunity to
communicate with one another before committing to one value or the
other. In Q.3.1.3 of Ex. 3.1, we gave you the opportunity to run a version
close to the Hopfield model by setting instr to 2.0 in the Necker cube exam-
ple. In this case the units are always at either their maximum or minimum
values. Under these conditions, the system reaches local goodness maxima
(energy minima in Hopfield’s terminology) much more frequently.
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Once the problem has been cast as an energy minimization problem and
the analogy with crystals has been noted, the solution to the problem of
local goodness maxima can be solved in essentially the same way that flaws
are dealt with in crystal formation. One standard method involves anneal-
ing. Annealing is a process whereby a material is heated and then cooled
very slowly. The idea is that as the material is heated, the bonds among
the atoms weaken and the atoms are free to reorient relatively freely. They
are in a state of high energy. As the material is cooled, the bonds begin to
strengthen, and as the cooling continues, the bonds eventually become suf-
ficiently strong that the material freezes. If we want to minimize the
occurrence of flaws in the material, we must cool slowly enough so that the
effects of one particular coalition of atoms has time to propagate from
neighbor to neighbor throughout the whole material before the material
freezes. The cooling must be especially slow as the freezing temperature is
approached. During this period the bonds are quite strong so that the clus-
ters will hold together, but they are not so strong that atoms in one cluster
might not change state so as to line up with those in an adjacent cluster—
even if it means moving into a momentarily more energetic state. In this
way annealing can move a material toward a global energy minimum.

The solution then is to add an annealing-like process to our network
models and have them employ a kind of simulated annealing. The basic idea
is to add a global parameter analogous to temperature in physical systems
and therefore called temperature. This parameter should act in such a way
as to decrease the strength of connections at the start and then change so as
to strengthen them as the network is settling. Moreover, the system should
exhibit some random behavior so that instead of always moving uphill in
goodness space, when the temperature is high it will sometimes move
downhill. This will allow the system to "step down from" goodness peaks
that are not very high and explore other parts of the goodness space to find
the global peak. This is just what Hinton and Sejnowski have proposed in
the Boltzmann machine, what Geman and Geman (1984) have proposed in
the Gibbs sampler, and what Smolensky has proposed in harmony theory.

The essential update rule employed in all of these models is probabilistic
and is given by what we call the logistic function:

probability (a; (1) = 1) = l-ne; IT v
l1+e 7

where T is the temperature. This differs from the basic schema model in
three important ways. First, like Hopfield’s original model, the units are
binary. They can take on only their maximum and minimum values.
Second, they are stochastic. That is, the update rule specifies only a proba-
bility that the units will take on one or the other of their values. This
means that the system need not necessarily go uphill in goodness—it can
move downhill as well. Third, the behavior of the systems depends on a
global parameter, temperature, which can start out high and be reduced
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during the settling phase. These characteristics allow these systems to
implement a simulated annealing process. One final point: It is not
accidental that these three models all choose exactly the same update rule.
This rule is drawn directly from physics and there are important mathemati-
cal results that, in effect, guarantee that the system will end up in a global
maximum if the system is annealed slowly enough. Having made the anal-
ogy with physics, we can also make use of the results of physics to describe
the behavior of our networks. ;

Figure 7 shows the probability values as a function of net input and the
temperature. Several observations should be made. First, if the net input is
0, the unit takes on its maximum and minimum values with equal probabil-
ity. Second, if the net input is large enough, the unit will always take on its
maximum value no matter what value the temperature is; and if the net
input in sufficiently negative, the unit will take on its minimum value no
matter what the temperature. Third, as the temperature approaches 0, the
function becomes deterministic and takes on its maximum value if the net
input is positive and its minimum value if the net input is negative. This
"zero temperature" case is identical to the Hopfield binary unit model.
Thus, we see that there are two dimensions on which these models are
varying—whether the units are binary or continuous values and whether the
models are stochastic (probabilistic) or deterministic. The Hopfield (1982)
model is deterministic and binary. The Boltzmann machine and harmony
theory are stochastic and binary. The Hopfield (1984) model and the
schema model are deterministic and continuous. All five models converge
to binary, deterministic models as the temperature goes to 0 in the
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FIGURE 7. Activation probabilities according to the logistic function. (From PDP:2, p. 69.)
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stochastic models and as the size of the step taken per update (controlled
by istr) is increased in the schema model.

THE BOLTZMANN MACHINE

In PDP:7 Hinton and Sejnowski described the Boltzmann machine as a
constraint satisfaction system. Most of their chapter, however, focuses on
the development of a very interesting learning procedure. Here, we focus
on the use of the Boltzmann machine as a constraint satisfaction system.
We will especially focus on its role in reducing the frequency of local good-
ness maxima. (Following Hopfield and the physics analogy, Hinton and
Sejnowski spoke of energy and energy minimization. We will persist in
looking at the negation of energy, which we call goodness. The principles
are identical in either case, only the terminology varies.)

Implementation

The Boltzmann machine is conceptually very similar to the schema
model. Indeed, the Boltzmann system is accessed as a mode of the es pro-
gram. As in the schema model, there are two essential subroutines for
Boltzmann. These are a cycle and an rupdate routine. The cycle routine is
absolutely identical for the two models. The rupdate routine differs by only
a few lines of code—namely, the code for assigning an activation value to a
unit. Since they are nearly the same, we have deleted the comments and
reproduced the code for the Boltzmann version of rupdate below.

rupdate () {

for (updateno = 0; updateno < nupdates; updateno++) {
i, = randing(0; AUNIts: = 1);
netinput = 0;
for(3j = 0; j < nunits; j++) {
netinput += activation[j]*weight([i][]]~
1
netinput += bias[i];
netinput *= istrength;
netinput += estrength * input([i];

if (probability (logistic(netinput)) == 1)
activationli] = 1;
else

activation([i] = 0;
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where logistic(x) is a function given by

logistic(x) {

return(1.0 / (1.0 + exp( -1 * x / temperature)));

}

and probability(x) is a function that takes on value 1 with a probability equal
to the value of its argument: i

probability (x) {

if (rnd() < x)
return (1) ;
else
return (0) ;
}

The rnd() function simply returns a uniformly distributed random number
between 0 and 1.

Running the Program in Boltzmann Mode

Since the Boltzmann machine is so similar to our previous program, it is
implemented as mode of program cs. It is accessed by setting mode
boltzmann to 1. All of the commands and variables needed are described in
the list that begins on page 56. Of these, the most important specifically
for Boltzmann machines is the get/ annealing command, used to specify an
annealing schedule.

Ex. 3.5. Simulated Annealing in the Cube Example

Compare simulated annealing using the Boltzmann machine to the results
you obtained with the schema model for the cube example. To switch to
Boltzmann mode, enter set/ mode boltzmann 1 after starting up the program
with cube.tem and cube.str. You may also want to increase ncycles to 60,
since this is just beyond the point at which the annealing schedule levels
off.

Q.3.5.1. Run 20 runs with the Boltzmann machine, using its default
annealing schedule, and see how often the program gets stuck in a
local minimum. Compare these results to the case where the con-
tinuous updating scheme is used.
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Q.3.5.2. Examine the density of local maxima as a function of the anneal-
ing schedule. Try several schedules varying in gradualness and
starting temperature. Which variable makes more of a differ-
ence? Can you explain why?

Hints. 1t is necessary to run 20 runs or so with each schedule to get rea-
sonable estimates of the probabilities of getting stuck in local
maxima. Use relatively high values of the starting temperature
and very quick drops if you want to get a feel for what is happen-
ing. To study the time course of these simulations, it is useful to
set stepsize to update and to set single to 1. Then you can step
through and watch the network settle. You will note that things
begin to settle down when the temperature begins to get rather
low, say, in the range of 0.5 to 0.05.

Other Experiments With Boltzmann Machines

There are many more experiments that can be done with Boltzmann
machines. For example, you may explore the effects of stochastic variabil-
ity in the room example, the Jets and Sharks example, or the tic-tac-toe
example. We provide one additional example, called boltz. To run it, exe-
cute the c¢s program with the boltz.tem and boltz.str files. The screen display
indicates the excitatory connections; you will want to study the boltz.wis
file to see what the inhibitory connections are. You can also construct
examples of your own, perhaps setting up a network that you feel might be
challenging for finding global minima reliably.

HARMONY THEORY

Harmony theory, which was developed by Paul Smolensky, is described
in PDP:6. Although the basic mathematics of harmony theory is rather
similar to the Boltzmann machine, the structure and motivation are dif-
ferent. Whereas we can think of the Boltzmann machine as an arbitrarily
interconnected set of homogeneous units, harmony theory presupposes two
distinct layers of units. As illustrated in Figure 8, a harmony network con-
sists of a lower layer of representational feature units and an upper layer of
knowledge atoms. The feature units take on activation values + 1, whereas
the knowledge atoms take on values 0 and 1. It is useful to think of the
feature units as corresponding to the featural description of a situation. In
a complete description, each feature is either present (+1) or absent (—1).
The knowledge atoms, on the other hand, are best thought of as bits of
knowledge about what configurations of features "go together" Knowledge
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FIGURE 8. The graphical representation of a particular harmony model. In this model, the
representational features represent letters in particular positions, and the knowledge atoms
represent common letter combinations. (From PDP:6, p. 216.)

atoms may be either active or inactive. When a knowledge atom is active,
it can be viewed as asserting that the configuration of input features it is
looking for is present in the environment. When a knowledge atom is inac-
tive it can be viewed as asserting that the evidence does not warrant such
an assertion. All connections in a harmony model are symmetric, and all
connections are between features and knowledge atoms. Thus, a given
feature may either excite a knowledge atom that is consistent with it, inhib-
it a knowledge atom that is inconsistent with it, or have no effect on a
knowledge atom to which the feature is irrelevant. Similarly, knowledge
atoms specify certain configurations of features that are consistent with the
knowledge represented by that atom. Thus a knowledge atom may activate
those features that are consistent with the atom, inhibit those that are
inconsistent, or not connect with those that are irrelevant to the contents of
that atom. Neither features nor knowledge atoms are directly connected to
one another. All connections in the system are +1. However, each
knowledge atom has a strength designated o. The strength corresponds to
the degree that the knowledge atom in question insists that the features to
which it is connected are present in the input.

Harmony theory is so named because, for any configuration of input
features, the system finds the configuration of knowledge atoms that is
maximally consistent, or harmonious, with the featural constraints. It is
useful to see the configuration of active knowledge atoms as an interpreta-
tion of the input features.

In addition to creating an interpretation of a set of input features, the
knowledge atoms themselves can fill in missing features in a way that is
maximally consistent with those features that are fixed (clamped) and the
set of knowledge atoms. This is the so-called completion problem. The
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harmony function itself is very similar to the "goodness" function of the
previous sections. It can be written in the following way:

harmony = Y .o a;h;.
:

Here, i ranges over the knowledge atoms, and h; is a measure of the
degree to which the current set of feature values is consistent with
knowledge atom i. The variable o; is a strength or importance value associ-
ated with unit /. The variable #; is given by -

erk.-j
-

h.
i n,

— K.

Here j ranges over features, r; is the activation of representational feature
J, and n; is the number of nonzero connections to atom /. The variable k;;
is given by

1 if positive connection
k; =1—1 if negative connection
if no connection,

In other words, the total harmony is given by the sum of contributions of
each of the knowledge atoms. If a knowledge atom is not activated
(a;=0), there is no contribution. If it is active (a;= 1), then it contributes
an amount that is proportional to the product of its importance, o;, and a
term representing the consistency of that atom with the current pattern of
activation among the representational features. This consistency term, 4,
is the proportion of relevant features that are consistent minus the propor-
tion that are inconsistent, less a constant «. Consider first the case in
which « is 0. In this case, turning on atom i/ will contribute a positive
amount to the overall harmony of the system whenever the number of con-
sistent features exceeds the number of inconsistent features. If x is near 1,
then it will contribute to the overall harmony only when all, or nearly all,
of its features match the template for the atom. The standard goodness
function discussed in the Boltzmann model and the schema model
corresponds to the k = 0 case.® Given the motivation of harmony theory,
larger values of k make more sense.

3 Note that if k=0 we can represent the harmony function as
harmony = Za‘-rj W
iJ

where wj; = o k;/n;. This is simply the standard goodness function discussed above.
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Implementation

The harmony model is implemented as a mode of the es program. The
main differences between harmony mode and boltzmann mode are

@ Only the weights to each atom from each feature are specified. The
weight to a feature from an atom is just the weight from the feature
to the atom. s

® The rupdate routine is modified so that there are two versions of
the update function, depending on whether the unit being updated
is a knowledge atom or a feature.

® The goodness measure (now called harmony) is computed as just
described, taking the importance variables o; and k into account.

Values for o; are set by default to 1.0. Other values may be specified in
the .net file, as described in Appendix C.

Running the Program in Harmony Mode

Harmony mode is accessed simply by setting the harmony mode variable
to 1. The clamp mode is also set to 1. The parameter kappa and the con-
figuration variables nunits and ninputs must be defined. The variable ninputs
indicates the number of features. The rest of the units are treated as
knowledge atoms. The configuration variables are generally defined in the
.net file; the weights and sigmas are also specified there. Once a set of tem-
plates has been specified and the network initialized, the harmony version
of the es program is run just like the Boltzmann version: Some features are
clamped on (+1) or off (—1), an annealing schedule is defined, the net-
work is reset to initialize the annealing schedule, and then the cycle com-
mand is entered to initiate processing.

Ex. 3.6. Electricity Problem Solving

Consider the electricity problem described in PDP:6 (p. 240) and illus-
trated in Figure 9. This problem, first developed by Riley and Smolensky
(1984), illustrates how harmony theory can be employed to solve certain
"higher level" problems. In this case, the problem is to determine how dif-
ferent variables in an electrical circuit change when other variables are
altered. For example, what happens to the total resistance in the circuit
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FIGURE 9. If the resistance of R, is increased (assuming that V,, and R; remain the
same), what happens to the current and voltage drops across the two resistors? (From PDP:6,
p. 240.)

shown when the resistance in one of the resistors is increased? Assuming
total voltage stays constant, what happens to the voltage drop across each
resistor, and what happens to the current? The first step is to develop a set
of representational features. In this case, we must represent seven quanti-
ties: the total current, /; the resistances, R; and R,; the total resistance,
R,.a1; the voltage drops across the two resistors, ¥, and V5; and the total
voltage, V,,,. For each of these quantities we must represent whether it
goes up, goes down, or stays the same. This is done by assigning two units
to each quantity: one to indicate whether or not a change occurs in that
variable (+1 indicating change and —1 indicating no change) and one to
indicate the direction of change. Use +1 to indicate an increase and —1 to
indicate a decrease. (If no change occurred, the value of the second feature
is irrelevant.) Figure 10 shows the screen layout for the electricity problem.
There are columns for each of the seven variables. Below each column is a

cs:
disp/ exam/ get/ save/ set/ clear cycle do input log newstart quit
reset run test

I Rl RKZ RT V1 vZ VT cycleno 1]

Inputs 00 [0 11 00 00 00 J@0 temp 1.0000
cu cu €u €U cu cu cu harmony 0. 0000

Features 00 00 00 00 Q0 00 00

knowledge atom activations

vuuuusssddddd
nsdddusduunusd
vuusdusdusddd
Vi+V2=VI 0000000000000
Rl +R2=RT 00000O000O0D0DO0CO00
I*Rl =Vl 000O0CO0C0DO0CO0OCO0ODO0COCDO0D
I*R2=V¥V2 00D0O0O000O00CO0DO0DO00D0
I*RT=VI 0000000000000

FIGURE 10. Screen layout for the electricity problem.
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set of pairs of features, one indicating whether or not that quantity changed
(indicated by a ¢) and one indicating whether the quantity went up or down
(indicated by a u). Note that the row labeled Inputs is a representation of
the problem. The Os indicate unclamped inputs—inputs to be filled in
through processing. The =+1 values indicate the clamped inputs, which
constitute the problem specification. In this case, we have R, increasing
(both the change feature and the up feature are clamped +1), and we have
Vi @nd R unchanged (the change feature is clamped to —1). All other
features are left free. it

The next problem in specifying a harmony network is to encode the
knowledge constraints. In this case, the knowledge is of the facts of electri-
cal circuits. We want to represent knowledge about electricity qualitatively.
We can do this by taking the laws of electricity (Ohm’s law and Kirchoff’s
law), determining the legitimate relationships among the variables involved,
and building knowledge atoms for each such relationship. An example
should clarify this. Consider first the law that the total voltage drop is the
sum of the voltage drops over each resistor, V|, + V,= V,,,. This equa-
tion allows for 13 qualitative relationships among the variables. ¥, could
increase and V), could increase, in which case V,,,, must increase; ¥, could
increase and V, could stay the same, in which case V,,,, must increase; V,
could increase and V, decrease, in which case V,,,, could increase, stay the
same, or decrease; and so on. There are five such equations and 13 qualita-
tive relationships for each equation. This leads to 65 knowledge atoms
encoding these relationships. The relationships and knowledge atoms are
shown in Figure 10. All of these relationships must be encoded in the net-
work by specifying a positive, negative, or zero weight from each input
feature to each knowledge atom. Here is the portion of the network speci-
fication for the 13 laws related to voltage:

The p represents +1 and the m represents —1. Since the weights are sym-
metric in harmony theory, we only require that the connections from the
input feature units to the knowledge atom units be specified. Since this
problem involves the relationships between voltage, V, current, 7, and
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resistance, R, we have called this the VIR problem and have named the
relevant files vir.tem, vir.net, vir.str, and so on.

You should now be ready to run the VIR problem. Note that the inputs
specifying our example problem are set up, and an annealing schedule is
defined in the .str file. All you need to do to run this exercise is start up
the es program with the vir.tem and vir.str files, then issue the cycle com-
mand.

Q.3.6.1. Watch the system solve the problem"énd note the final equations
selected for the solution. Run the problem several times looking
for local maxima.

Hints. This network settles very slowly; it may be necessary to run 300
or sometimes 400 cycles before it is safe to assume things have
stopped changing; even then you will find that some of the
knowledge atoms flicker on and off. It may be useful to set step-
size to ncycles, set ncycles to 100, and issue the cycle command
three or four times in each run since much of the total elapsed
time can be taken up in screen updates. At the end you may
want to run a few more cycles with single set to 1 and stepsize set
to cycle to see which units are flickering on and off.

The next two questions are somewhat time consuming and require you to
follow the course of processing in the network carefully over time. You
will probably have to do several runs in each case to get reliable results. It
may be useful to make use of the do command facility and log files so that
you can run several runs automatically and save the results; Appendix D
describes utility programs that may be useful in analyzing the output.

Q.3.6.2. Smolensky reported that the system seemed to come to various
conclusions sequentially. See how well you are able to replicate
his findings.

Q.3.6.3. Select another problem in the VIR domain (i.e., input a different
set of initial constraints) and look at the sequential character of
the problem solving in this case. Does it seem reasonable that
one might solve the problem in that order? Why does the system
seem to settle on different aspects of the problem in different
orders?






